|本期目录/Table of Contents|

[1]任立世,程功,焦思明,等.热紫链霉菌几丁质酶表达及低脱乙酰度壳寡糖制备[J].应用与环境生物学报,2019,25(02):445-450.[doi:10.19675/j.cnki.1006-687x.2018.06038]
 REN Lishi,CHENG Gong,JIAO Siming,et al.Expression of chitinase from Streptomyces thermoviolaceus and preparation of chitooligosaccharides with a low degree of deacetylation[J].Chinese Journal of Applied & Environmental Biology,2019,25(02):445-450.[doi:10.19675/j.cnki.1006-687x.2018.06038]
点击复制

热紫链霉菌几丁质酶表达及低脱乙酰度壳寡糖制备()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
25卷
期数:
2019年02期
页码:
445-450
栏目:
研究论文
出版日期:
2019-04-25

文章信息/Info

Title:
Expression of chitinase from Streptomyces thermoviolaceus and preparation of chitooligosaccharides with a low degree of deacetylation
作者:
任立世程功焦思明冯翠张毓宸李建军杜昱光
中国科学院过程工程研究所,生化工程国家重点实验室 北京 100190
Author(s):
REN Lishi CHENG Gong JIAO Siming FENG Cui ZHANG Yuchen LI Jianjun & DU Yuguang**
State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
关键词:
热紫链霉菌几丁质酶毕赤酵母壳寡糖超高效液相色谱-四极杆飞行时间质谱核磁共振
Keywords:
Streptomyces thermoviolaceus chitinase Pichia pastoris chitooligosaccharides ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry nuclear magnetic resonance
分类号:
Q814.9
DOI:
10.19675/j.cnki.1006-687x.2018.06038
摘要:
壳寡糖具有抗炎、抗肿瘤及激活植物免疫等一系列生物活性. 与传统的高脱乙酰度壳寡糖相比,低脱乙酰度壳寡糖可能具有更高生物活性. 表达热紫链霉菌几丁质酶基因并使用表达产物水解制备低脱乙酰度壳寡糖;优化并全基因合成热紫链霉菌几丁质酶基因,利用毕赤酵母进行分泌表达,对产物酶的性质进行鉴定;利用表达的几丁质酶水解制备低脱乙酰度壳寡糖,使用超高效液相色谱-四极杆飞行时间质谱(Ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry,UPLC-QTOF MS)对其组分进行分离及鉴定,使用核磁共振(Nuclear magnetic resonance,NMR)确定其末端结构特征. 结果显示,表达的几丁质酶蛋白浓度为0.20 mg/mL,最适pH为5.6,最适温度为60 ℃,酶活为0.98 U/mL,该酶在80 ℃及以下时较稳定,该酶水解制备的低脱乙酰度壳寡糖中包含至少35种聚合度2-17、不同脱乙酰度的壳寡糖组分,这些组分的还原末端主要由N-乙酰氨基葡萄糖组成,非还原末端同时包含氨基葡萄糖及N-乙酰氨基葡萄糖. 本研究表明毕赤酵母分泌表达的热紫链霉菌几丁质酶具有较好的热稳定性,具有应用于低脱乙酰度壳寡糖规模制备的潜力. (图4 表1 参22)
Abstract:
Chitooligosaccharides have a range of biological activities, such as anti-inflammatory, anti-tumor, and activation of plant immunity. Compared with traditional high deacetylated chitooligosaccharides, low deacetylated chitooligosaccharides may have higher biological activity. In this study, the chitinase encoding gene of Streptomyces thermoviolaceus was expressed and chitooligosaccharides with a low degree of deacetylation were prepared by the expressed enzyme. The chitinase encoding gene of S. thermoviolaceus was optimized, synthesized, and secretorily expressed in Pichia pastoris. The properties of the produced enzyme were identified. Chitooligosaccharides with a low degree of deacetylation were prepared by the expressed enzyme and the composition and structural characteristics were analyzed by ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry and nuclear magnetic resonance, respectively. The protein concentration of the expressed product reached 0.20 mg/mL. The optimum pH and temperature of the expressed chitinase was 5.6 and 60 ℃, respectively, and enzymatic activity reached 0.98 U/mL. The chitinase was continuously thermostable at 80 ℃. These hydrolysates contained at least 35 different kinds of chitooligosaccharides with a degree of polymerization of 2–17 and different degrees of deacetylation. The reducing end of oligosaccharide fractions were mainly composed of N-Acetylglucosamine, whereas both glucosamine and N-Acetylglucosamine were found in the non-reducing end. This study showed that the chitinase of S. thermoviolaceus secretorily expressed in P. pastoris had good thermal stability and has the potential to be used in the scale preparation of chitooligosaccharides with a low degree of deacetylation.

参考文献/References:

1. Lodhi G, Kim YS, Hwang JW, Kim SK, Jeon YJ, Je JY, Ahn CB, Moon SH, Jeon BT, Park P J. Chitooligosaccharide and its derivatives: preparation and biological applications [J]. Biomed Res Int, 2014, 2014 (1): 654913
2. Azuma K, Osaki T, Minami S, Okamoto Y. Anticancer and anti-inflammatory properties of chitin and chitosan oligosaccharides [J]. J Funct Biomater, 2015, 6 (1): 33-49
3. Shinya T, Nakagawa T, Kaku H, Shibuya N. Chitin-mediated plant-fungal interactions: catching, hiding and handshaking [J]. Curr Opin Plant Biol, 2015, 26: 64-71
4. Je JY, Kim SK. Chitooligosaccharides as potential nutraceuticals: production and bioactivities [J]. Adv Food Nutr Res, 2012, 65: 321-336
5. Zou P, Yang X, Wang J, Li YF, Yu HL, Zhang YX, Liu GY. Advances in characterization and biological activities of chitosan and chitosan oligosaccharides [J]. Food Chem, 2016, 190: 1174-1181
6. Han Y, Zhao L, Yu Z, Feng J, Yu Q. Role of mannose receptor in oligochitosan-mediated stimulation of macrophage function [J]. Int Immunopharmacol, 2005, 5 (10): 1533-1542
7. Hayafune M, Berisio R, Marchetti R, Silipo A, Kayama M, Desaki Y, Arima S, Squeglia F, Ruggiero A, Tokuyasu K, Molinaro A, Kaku H, Shibuya N. Chitin-induced activation of immune signaling by the rice receptor CEBiP relies on a unique sandwich-type dimerization [J]. PNAS, 2014, 111 (3): E404-E413
8. Liu B, Li JF, Ao Y, Qu J, Li Z, Su J, Zhang Y, Liu J, Feng D, Qi K, He Y, Wang J, Wang HB. Lysin motif-containing proteins LYP4 and LYP6 play dual roles in peptidoglycan and chitin perception in rice innate immunity [J]. Plant Cell, 2012, 24 (8): 3406-3419
9. Xu J, Wang G, Wang J, Li Y, Tian L, Wang X, Guo W. The lysin motif-containing proteins, Lyp1, Lyk7 and LysMe3, play important roles in chitin perception and defense against Verticillium dahliae in cotton [J]. BMC Plant Biol, 2017, 17 (1): 148
10. Tegl G, Ohlknecht C, Vielnascher R, Rollett A, Hofinger-Horvath A, Kosma P, Guebitz GM. Cellobiohydrolases produce different oligosaccharides from chitosan [J]. Biomacromolecules, 2016, 17 (6): 2284-2292
11. Roncal T, Oviedo A, Lopez de Armentia I, Fernandez L, Villaran MC. High yield production of monomer-free chitosan oligosaccharides by pepsin catalyzed hydrolysis of a high deacetylation degree chitosan [J]. Carbohydr Res, 2007, 342 (18): 2750-2756
12. Lee DX, Xia WS, Zhang JL. Enzymatic preparation of chitooligosaccharides by commercial lipase [J]. Food Chem, 2008, 111 (2): 291-295
13. 赵翔, 霍克克, 李育阳. 毕赤酵母的密码子用法分析[J]. 生物工程学报, 2000, 16 (3): 308-311 [Zhao X, Huo KK, Li YY. Synonymous codon usage in Pichia pastoris [J]. Chin J Biotechnol, 2000, 16 (3): 308-311]
14. Chen X, Zhai C, Kang L, Li C, Yan H, Zhou Y, Yu X, Ma L. High-level expression and characterization of a highly thermostable chitosanase from Aspergillus fumigatus in Pichia pastoris [J]. Biotechnol Lett, 2012, 34 (4): 689-694
15. Sasaki C, Varum KM, Itoh Y, Tamoi M, Fukamizo T. Rice chitinases: sugar recognition specificities of the individual subsites [J]. Glycobiology, 2006, 16 (12): 1242-1250
16. Tsujibo H, Hatano N, Endo H, Miyamoto K, Inamori Y. Purification and characterization of a thermostable chitinase from Streptomyces thermoviolaceus OPC-520 and cloning of the encoding gene [J]. Biosci Biotechnol Biochem, 2000, 64 (1): 96-102
17. Tsujibo H, Endo H, Minoura K, Miyamoto K, Inamori Y. Cloning and sequence analysis of the gene encoding a thermostable chitinase from Streptomyces thermoviolaceus OPC-520 [J]. Gene, 1993, 134 (1): 113-117
18. Tsujibo H, Endo H, Miyamoto K, Inamori Y. Expression in Escherichia coli of a gene encoding a thermostable chitinase from Streptomyces thermoviolaceus OPC-520 [J]. Biosci Biotechnol Biochem, 1995, 59 (1): 145-146
19. Christodoulou E, Duffner F, Vorgias CE. Overexpression, purification, and characterization of a thermostable chitinase (Chi40) from Streptomyces thermoviolaceus OPC-520 [J]. Protein Expr Purif, 2001, 23 (1): 97-105
20. Tsujibo H, Okamoto T, Hatano N, Miyamuto K, Watanabe T, Mitsucom M, Inamori Y. Family 19 chitinases from Streptomyces thermoviolaceus OPC-520: molecular cloning and characterization [J]. Biosci Biotechnol Biochem, 2000, 64 (11): 2445-2453
21. Tews I, Terwisscha van Scheltinga AC, Perrakis A, Wilson KS, Dijkstra BW. Substrate-assisted catalysis unifies two families of chitinolytic enzymes [J]. J Am Chem Soc, 1997, 119 (34): 7954-7959
22. Sorbotten A, Horn SJ, Eijsink VG, Varum KM. Degradation of chitosans with chitinase B from Serratia marcescens. production of chito-oligosaccharides and insight into enzyme processivity [J]. FEBS J, 2005, 272 (2): 538-549

相似文献/References:

[1]彭国良,薛皎亮,刘卫敏,等.蜡蚧轮枝菌入侵蚧虫表皮过程中蛋白酶和几丁质酶的作用[J].应用与环境生物学报,2009,15(02):220.[doi:10.3724/SP.J.1145.2009.00220]
 PENG Guoliang,XUE Jiaoliang**,LIU Weimin & XIE Yingping.Role of Protease and Chitinase of Verticillium lecanii in Infecting Scale Insect Cuticle[J].Chinese Journal of Applied & Environmental Biology,2009,15(02):220.[doi:10.3724/SP.J.1145.2009.00220]
[2]胡燕梅,李国庆,杨龙.影响重寄生真菌盾壳霉几丁质酶的活性因子[J].应用与环境生物学报,2009,15(02):226.[doi:10.3724/SP.J.1145.2009.00226]
 HU Yanmei,LI Guoqing** & YANG Long.Characterization of Factors Affecting Activity of Chitinase Produced by Mycoparasite Coniothyrium minitans[J].Chinese Journal of Applied & Environmental Biology,2009,15(02):226.[doi:10.3724/SP.J.1145.2009.00226]
[3]薛皎亮,彭国良,谢映平,等.沙里院褐球蚧蜜露对病原真菌蜡蚧轮枝菌侵染力的影响[J].应用与环境生物学报,2010,16(04):504.[doi:10.3724/SP.J.1145.2010.00504]
 XUE Jiaoliang,PENG Guoliang,XIE Yingping,et al.Effect of Honeydew Excreted by Rhodococcus sariuoni on Infection Ability of Verticillium lecanii[J].Chinese Journal of Applied & Environmental Biology,2010,16(02):504.[doi:10.3724/SP.J.1145.2010.00504]
[4]黄玉吉,赖钟雄.香蕉几丁质酶基因ChiI2超表达载体和干涉表达载体的构建[J].应用与环境生物学报,2019,25(03):672.[doi:10.19675/j.cnki.1006-687x.201809019]
 HUANG Yuji LAI Zhongxiong**.Over-expression and RNAi expression vector construction for the ChiI2 gene of banana[J].Chinese Journal of Applied & Environmental Biology,2019,25(02):672.[doi:10.19675/j.cnki.1006-687x.201809019]

更新日期/Last Update: 2019-04-25