|本期目录/Table of Contents|

[1]刘巧利,杨套伟,周俊平,等.酶法高效转化苯乙酮酸合成L-苯甘氨酸[J].应用与环境生物学报,2019,25(02):451-456.[doi:10.19675/j.cnki.1006-687x.2018.07009]
 LIU Qiaoli,YANG Taowei,ZHOU Junping,et al.Efficient enzymatic synthesis of L-phenylglycine from benzoylformic acid[J].Chinese Journal of Applied & Environmental Biology,2019,25(02):451-456.[doi:10.19675/j.cnki.1006-687x.2018.07009]
点击复制

酶法高效转化苯乙酮酸合成L-苯甘氨酸()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
25卷
期数:
2019年02期
页码:
451-456
栏目:
研究论文
出版日期:
2019-04-25

文章信息/Info

Title:
Efficient enzymatic synthesis of L-phenylglycine from benzoylformic acid
作者:
刘巧利杨套伟周俊平徐美娟张显饶志明
江南大学生物工程学院工业生物技术教育部重点实验室 无锡 214122
Author(s):
LIU Qiaoli YANG Taowei ZHOU Junping XU Meijuan ZHANG Xian & RAO Zhiming**
Ministry of Education Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
关键词:
L-苯甘氨酸苯乙酮酸亮氨酸脱氢酶甲酸脱氢酶辅酶再生体系
Keywords:
L-phenylglycine benzoylformic acid leucine dehydrogenase formate dehydrogenase cofactor regeneration system
分类号:
Q814.9
DOI:
10.19675/j.cnki.1006-687x.2018.07009
摘要:
L-苯甘氨酸是合成多种抗生素和抗癌药物的重要中间体,目前主要通过化学法合成. 利用蜡样芽孢杆菌来源的亮氨酸脱氢酶(LeuDH)催化苯乙酮酸的还原氨基化合成L-苯甘氨酸,并偶联甲酸脱氢酶(FDH)进行辅酶再生,建立了一种新型的苯甘氨酸生物合成方法. 结果表明,该辅酶再生体系可有效地用于L-苯甘氨酸的合成,且没有副产物残留,辅底物甲酸铵还可提供还原氨基化所需NH4+,随后对酶转化条件进行优化,最适转化条件为苯乙酮酸60 g/L,甲酸铵50.4 g/L,LeuDH 4 U/mL,FDH 2 U/mL,NAD+浓度0.14 g/L,pH 8.0以及30 ℃. 在最优条件下,1 L的转化体系中,转化反应5 h,苯乙酮酸转化率达到99%,L-苯甘氨酸产量60.2 g/L,ee值>99%. 本研究为L-苯甘氨酸的工业生产提供了一种更加简单、高效、经济的生物合成途径. (图8 表4 参27)
Abstract:
L-phenylglycine, an important intermediate in the synthesis of various antibiotics and anticancer drugs, is currently mainly synthesized through chemical methods. In this study, a new biological synthesis method for L-phenylglycine was developed. Leucine dehydrogenase (LeuDH) from Bacillus cereus was used to catalyze the reductive amination of benzoylformic acid for L-phenylglycine synthesis, and formate dehydrogenase (FDH) was used for cofactor regeneration. The results showed that the cofactor regeneration system was effective for the synthesis of L-phenylglycine without any by-products, and the reaction cosubstrate ammonium formate further provided the ammonium ions (NH4+) required for reductive amination. The enzymatic transformation conditions were then optimized to improve conversion efficiency. The obtained optimal conversion conditions were: benzoylformic acid 60 g/L, ammonium formate 50.4 g/L, LeuDH 4 U/mL, FDH 2 U/mL, NAD+ concentration 0.14 g/L, pH 8.0, and a temperature of 30 ℃. Finally, under these optimal conditions, a 99% conversion rate was achieved in 5 h with the yield of 60.2 g/L, and an ee value > 99% at 1 L scale. This study, therefore, provides a simplified, more efficient and economical biosynthetic method for L-phenylglycine production.

参考文献/References:

1. Van Langen LM, Van Rantwijk F, ?vedas VK, Sheldon RA. Penicillin acylase-catalyzed peptide synthesis: a chemo-enzymatic route to stereoisomers of 3,6-diphenylpiperazine-2,5-dione [J]. Tetrahedron Asymmetry, 2000, 11 (5): 1077-1083
2. Ningsih F, Kitani S, Fukushima E, Nihira T. VisG is essential for biosynthesis of virginiamycin S, a streptogramin type B antibiotic, as a provider of the nonproteinogenic amino acid phenylglycine [J]. Microbiology, 2011, 157 (11): 3213-3220
3. Mast YJ, Wohlleben W, Schinko E. Identification and functional characterization of phenylglycine biosynthetic genes involved in pristinamycin biosynthesis in Streptomyces pristinaespiralis [J]. J Biotechnol, 2011, 155 (1): 63-67
4. Al Toma RS, Brieke C, Cryle MJ, Süssmuth RD. Structural aspects of phenylglycines, their biosynthesis and occurrence in peptide natural products [J]. Nat Prod Rep, 2015, 32 (8): 1207-1235
5. Croteau R, Ketchum REB, Long RM, Kaspera R, Wildung MR. Taxol biosynthesis and molecular genetics [J]. Phytochem Rev, 2006, 5 (1): 75-97
6. Landini D, Montanari F, Rolla F. Synthesis of α-aminoarylacetic acids from chloroform, arylaldehydes, and aqueous ammonia under two-phase conditions [J]. Synthesis, 1979, 10 (16): 26-27
7. 徐亚荣. 苯甘氨酸、对氯苯甘氨酸合成工艺的研究[D]. 南京: 南京工业大学, 2005 [Xu YR. Study on synthetic technology of phenylglycine and ρ-chlorophenylglycine [D]. Nanjing: Nanjing University of Technology, 2005]
8. Liu SP, Liu RX, El-Rotail AAMM, Ding ZY, Gu ZH, Zhang L, Shi GY. Heterologous pathway for the production of L-phenylglycine from glucose by E. coli [J]. J Biotechnol, 2014, 186: 91-97
9. Resch V, Fabian WMF, Kroutil W. Deracemisation of mandelic acid to optically pure non-natural L-phenylglycine via a redox-neutral biocatalytic cascade [J]. Adv Synth Catal, 2010, 352 (6): 993-997
10. Fan CW, Xu GC, Ma BD, Bai YP, Zhang J, Xu JH. A novel D-mandelate dehydrogenase used in three-enzyme cascade reaction for highly efficient synthesis of non-natural chiral amino acids [J]. J Biotechnol, 2015, 195: 67-71
11. Cheng J, Xu GC, Han RZ, Dong JJ, Ni Y. Efficient access to L-phenylglycine using a newly identified amino acid dehydrogenase from Bacillus clausii [J]. RSC Adv, 2016, 6 (84): 80557-80563
12. 黄春辉, 林陈水. 亮氨酸脱氢酶研究进展及其工业应用[J]. 氨基酸和生物资源, 2012, 34 (2): 16-20 [Hang CH, Lin CS. Research progress of leucine dehydrogenase and its industrial application [J]. Amino Acids Biotic Res, 2012, 34 (2): 16-20]
13. Li J, Pan J, Zhang J, Xu JH. Stereoselective synthesis of L-tert-leucine by a newly cloned leucine dehydrogenase from Exiguobacterium sibiricum [J]. J Mol Catal B Enzym, 2014, 105: 11-17
14. Tao RS, Jiang Y, Zhu FY, Yang S. A one-pot system for production of L-2-aminobutyric acid from L-threonine by L-threonine deaminase and a NADH-regeneration system based on L-leucine dehydrogenase and formate dehydrogenase [J]. Biotechnol Lett, 2014, 36 (4): 835-841
15. 戚云龙,杨套伟,周俊平,郑俊贤,徐美娟,张显,饶志明. 多酶催化拆分DL-正缬氨酸生产L-正缬氨酸[J]. 应用与环境生物学报, 2017, 23 (6): 1015-1021 [Qi YL, Yang TW, Zhou JP, Zheng JX, Xu MJ, Zhang X, Rao ZM. Multi-enzymatic resolution of DL-norvaline for L-norvaline production [J]. Chin J Appl Environ Biol, 2017, 23 (6): 1015-1021]
16. Zhou JP, Wang YL, Chen JJ, Xu MJ, Yang TW, Zheng JX, Zhang X, Rao ZM. Rational engineering of Bacillus cereus leucine dehydrogenase towards α-keto acid reduction for improving unnatural amino acid production [J]. Biotechnol J, 2019, 14 (3): 1800253
17. Liu WM, Ma HM, Luo JX, Shen WH, Xu X, Li S, Hu Y, Huang H. Efficient synthesis of L-tert-leucine through reductive amination using leucine dehydrogenase and formate dehydrogenase coexpressed in recombinant E. coli [J]. Biochem Eng J, 2019, 14(3): 204-209
18. Kragl U, Vasic-Racki D, Wandrey C. Continuous production of L-tert-leucine in series of two enzyme membrane reactors [J]. Bioprocess Eng, 1996, 14 (6): 291-297
19. Ansorge MB, Kula MR. Production of recombinant L-leucine dehydrogenase from Bacillus cereus in pilot scale using the runaway replication system E. coli [piet98] [J]. Biotechnol Bioeng, 2015, 68 (5): 557-562
20. Zheng JX, Yang TW, Zhou JP, Xu MJ, Zhang X, Rao ZM. Elimination of a free cysteine by creation of a disulfide bond increases the activity and stability of Candida boidinii formate dehydrogenase [J]. Appl Environ Microbiol, 2017, 83 (2): 1-12
21. Fujita Y, Ramaley R, Freese E. Location and properties of glucose dehydrogenase in sporulating cells and spores of Bacillus subtilis [J]. J Bacteriol, 1977, 132 (1): 282
22. Sanwal BD, Zink MW. L-leucine dehydrogenase of Bacillus cereus [J]. Arch Biochem Biophys, 1961, 94 (3): 430-435
23. Schütte H, Flossdorf J, Sahm H, Kula MR. Purification and properties of formaldehyde dehydrogenase and formate dehydrogenase from Candida boidinii [J]. FEBS J, 1976, 62 (1): 151
24. Menzel A, Werner H, Altenbuchner J, Gr?ger H. From enzymes to “Designer bugs” in reductive amination: a new process for the synthesis of L-tert-leucine using a whole cell-catalyst [J]. Eng Life Sci, 2004, 4 (6): 573-576
25. Zhang CQ, Chen XX, Zou RY, Zhou K, Stephanopoulos G, Too HP. Combining genotype improvement and statistical media optimization for isoprenoid production in E. coli [J]. PloS ONE, 2013, 8 (10): 1-11
26. Qi YL, Yang TW, Zhou JP, Zheng JX, Xu MJ, Zhang X, Rao ZM, Yang ST. Development of a multi-enzymatic desymmetrization and its application for the biosynthesis of L-norvaline from DL-norvaline [J]. Process Biochem, 2017, 55: 104-109
27. Ou ZM, Shi HB, Sun XY, Shen WH. Synthesis of S-licarbazepine by asymmetric reduction of oxcarbazepine with Saccharomyces cerevisiae CGMCC No. 2266 [J]. J Mol Catal B Enzyme, 2011, 72 (3): 294-297

更新日期/Last Update: 2019-04-25