|本期目录/Table of Contents|

[1]张白梅,徐辉,曹瑜,等.紫外诱变选育高产丁二酮乳酸菌株及其低成本发酵优化[J].应用与环境生物学报,2017,23(03):437-442.[doi:2015.05032]
 ZHANG Baimei,XU Hui,CAO Yu,et al.Ultraviolet mutagenic selection of a lactobacillus with high productivity of butanedione and low cost optimization of fermentation[J].Chinese Journal of Applied & Environmental Biology,2017,23(03):437-442.[doi:2015.05032]
点击复制

紫外诱变选育高产丁二酮乳酸菌株及其低成本发酵优化()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
23卷
期数:
2017年03期
页码:
437-442
栏目:
研究论文
出版日期:
2017-06-25

文章信息/Info

Title:
Ultraviolet mutagenic selection of a lactobacillus with high productivity of butanedione and low cost optimization of fermentation
作者:
张白梅徐辉曹瑜刘博胡超李宪玲史红霞曹毅乔代蓉
四川大学生命科学学院,微生物与代谢工程四川省重点实验室 成都 610065
Author(s):
ZHANG Baimei XU Hui CAO Yu LIU Bo HU Chao LI Xianling SHI Hongxia CAO Yi & QIAO Diaorong
Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610065, China
关键词:
23-丁二酮植物乳杆菌紫外诱变发酵优化小麦麸皮
Keywords:
23-butanedione Lactobacillus plantarum UV mutagenesis fermentation optimization wheat bran
分类号:
Q936 : TQ920.1
DOI:
2015.05032
摘要:
2,3-丁二酮是一种常用的安全食品添加剂,为了提高微生物发酵中菌株的丁二酮产量,从泡菜水样品中分离筛选出一株野生型高产丁二酮菌株,并进行紫外诱变选育以及发酵条件优化. 筛选获得高产丁二酮野生型乳酸菌株①-2,产量为67.02 mg/L,经16S rDNA分子鉴定为植物乳杆菌(Lactobacillus plantarum). 紫外诱变获得高产丁二酮突变株U13,产量为127.88 mg/L. 对突变前后菌株几种丁二酮代谢相关酶酶活变化的比较结果显示,突变株丁二酮产量的提高是因为乳酸脱氢酶减少及乙酰乳酸合成酶增加. 正交实验优化突变株U13的最佳丁二酮发酵条件为接种量3%,初始pH 6.6,葡萄糖30 g/L,组合氮源(蛋白胨:酵母粉:牛肉膏= 2:1:2)20 g/L,柠檬酸氢二铵3 g/L,乙酸钠2 g/L,吐温- 80 1 mL/L,K2HPO4 2 g/L,Mg2+ 2 mmol/L,Mn2+ 0.7 mmol/L,Cu2+ 2 mmol/L,温度为37 ℃. 利用廉价碳氮源淀粉及小麦麸皮替代原有碳氮源,淀粉替代率不超过20%、小麦麸皮替代率不超过40%时,丁二酮产量降幅比较低. 本研究通过诱变选育和发酵条件优化,提高了菌株丁二酮产量,并通过廉价碳氮源替换降低了成本,可为丁二酮的微生物工业发酵提供参考. (图6 表4 参10)
Abstract:
Because 2,3-butanedione is a safe food additive, it is generating increasing interest among scientists. Therefore, the aim of this study was to screen bacteria for a strain with high production of 2,3-butanedione. First, we found (by screening) several wild-type strains yielding high concentration of 2,3-butanedione in pickle samples; then ultraviolet (UV) mutagenesis and fermentation optimization were used to improve the yield; additionally, the strains were identified by 16S rDNA molecular subtyping. Finally, to reduce the production cost, cheaper carbon and nitrogen sources were used to partially replace the original sources, thereby we investigated the relation between the nutrient replacement and 2,3-butanedione production. The results were as follows: (1) Using the screening, we obtained a wild-type strain (named 1-2) with 2,3-butanedione production of 67.02 mg/L; (2) the strain was identified as Lactobacillus plantarum; (3) we created an improved mutant strain (named U13) with 2,3-butanedione production of 127.88 mg/L; (4) using the orthogonal optimization test, we obtained an optimized strain with 2,3-butanedione production of 169.23 mg/L, and the conditions were as follows: inoculum concentration of 3%, initial pH of 6.6, 30 g/L glucose, 20 g/L nitrogen source (peptone:yeast powder:beef extract at 2:1:2), 3 g/L ammonium citrate dibasic, 2 g/L sodium acetate, 1 ml/L Twain-80, 2 g/L K2HPO4, 2 mmol/L Mg2+, 0.7 mmol/L Mn2+, 2 mmol/L Cu2+, temperature of 37 ℃. (5) The reduction in 2,3-butanedione production was relatively small when the replacement rate of a cheaper carbon source (i.e., starch) was not more than 20% and replacement rate of a cheaper nitrogen source (i.e., wheat bran) was not more than 40%. Thus, we successfully obtained a strain with high production (169.23 mg/L) of 2,3-butanedione, based on UV mutagenesis and fermentation optimization and successfully reduced the production cost by replacing the original carbon and nitrogen sources by cheaper ones.

参考文献/References:

1 郭洪秀, 张白梅, 冯顺利, 郭明月, 徐青锐, 曹毅, 乔代蓉. 一株丁二酮高产菌株的鉴定及发酵条件优化[J]. 应用与环境生物学报, 2015, 21 (1): 41-45 [Guo HX, Zhang BM, Feng SL, Guo MY, Xu QR, Cao Y, Qiao DR. Identification, Identification and fermentation optimization of a high butanedione yielding strain [J]. Chin J Appl Environ Biol , 2015, 21 (1): 41-45]
2 赵玲, 王静云, 包永明, 付怡, 刘伯实, 安丽佳.丁二酮高产菌株的选育及发酵动力学分析[J]. 生物技术, 2007年, 17 (5): 59-64 [Zhao L, Wang JY, Bao YM, Fu Y, Liu BS, An LJ. Selection of Enterobacter aerogenes mutant with high produtivity of diacetyl and analysis of fermentation kinetics [J]. Biotechnology, 2007, 17 (5): 59-64]
3 Jyoti BD, Suresh AK, Venkatesh KV. Diacetyl production and growth of Lactobacillus rhamnosus on multiple substrates [J]. World J Microbiol Biotechnol, 2003, 19 (5): 509-514
4 王然, 李秀婷, 陈存社, 吕跃钢, 宋焕禄. 硫酸二乙酯、紫外及γCO60辐射诱变筛选高产丁二酮菌株[J]. 中国食品学报, 2010, 10 (3): 88-91 [Wang R, Li XT, Chen CS, Lü YG, Song HL. Screening bacteria for high diacetyl production by DES, UV and γCO60 [J]. J Chin Inst Food Sci Technol, 2010, 10 (3): 88-91]
5 Bartowsky EJ, Henschke PA. The ‘buttery’ attribute of wine—diacetyl—desirability, spoilage and beyond [J]. Intern J Food Microbiol, 2004, 96 (3): 235-252
6 于田利, 张佳程, 范荣波, 禇庆环. 乳酸乳球菌乳脂亚种高产丁二酮的条件优化[J]. 中国乳品工业, 2011, 39 (2): 17-20 [Yu TL, Zhang JC, Fan RB, Chu QH. Research on the optimization of producing diacetyl of L. lactis subsp. [J]. Cremoris Dairy Ind, 2011, 39 (2): 17-20]
7 赵宏峰. α-乙酰乳酸合成酶基因的克隆及在大肠杆菌中的表达[D]. 上海: 复旦大学, 2010 [Zhao HF. Cloning of als gene and expression in E. coli. Shanghai: Fudan University, 2010]
8 蔡昱萌, 朱凌峰, 王丽敏, 于波, 郭红莲. 来自詹氏乳杆菌的耐热D-乳酸脱氢酶的酶学性质研究[J]. 微生物学通报, 2015, 42 (3): 460-466 [Cai YM, Zhu LF, Wang LM, Yu B, Guo HL. Biochemical characterization of a novel thermostable D-lactate dehydrogenase from Lactobacillus jensenii [J]. Microbiol China, 2015, 42 (3): 460-466]
9 Wang XW, Zheng ZJ, Dou PP. Cloning, expression, purification, and activity assay of proteins related to D-lactic acid formation in Lactobacillus rhamnosus [J]. Appl Microbiol Biotechnol, 2010, 87: 2117-2123
10 郑遂, 康欢, 赵蕊, 杨丽杰, 霍贵成. pH对粪肠球菌高产双乙酰的影响[J]. 东北农业大学学报, 2013, 44 (2): 7-11 [Zheng S, Kang H, Zhao R, Yang LJ, Huo GC. Effect of pH on high-level diacetyl production of Enterococcus faecalis [J]. J Northeast Agric Univ, 2013, 44 (2): 7-11]

相似文献/References:

[1]潘红玫,陈斌,李甫,等.迭鞘石斛的化学成分(Ⅱ)[J].应用与环境生物学报,2013,19(06):952.[doi:10.3724/SP.J.1145.2013.00952]
 PAN Hongmei,CHEN Bin,LI Fu,et al.Chemical Constituents from the Stems of Dendrobium denneanum (Ⅱ)[J].Chinese Journal of Applied & Environmental Biology,2013,19(03):952.[doi:10.3724/SP.J.1145.2013.00952]

更新日期/Last Update: 2017-06-25