|本期目录/Table of Contents|

[1]方泽涛,李伏生,刘靖雯,等.不同灌溉模式和施氮处理下稻田N2O排放与反硝化酶活性的关系[J].应用与环境生物学报,2017,23(06):1059-1066.[doi:10.3724/SP.J.1145.2016.12040]
 FANG Zetao,,et al.Relationship between N2O emission and denitrification enzyme activity in paddy soil under different irrigation modes and nitrogen treatments[J].Chinese Journal of Applied & Environmental Biology,2017,23(06):1059-1066.[doi:10.3724/SP.J.1145.2016.12040]
点击复制

不同灌溉模式和施氮处理下稻田N2O排放与反硝化酶活性的关系()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
23卷
期数:
2017年06期
页码:
1059-1066
栏目:
研究论文
出版日期:
2017-12-25

文章信息/Info

Title:
Relationship between N2O emission and denitrification enzyme activity in paddy soil under different irrigation modes and nitrogen treatments
作者:
方泽涛 李伏生 刘靖雯 王楷 董艳芳 黄忠华 罗维钢
1广西大学农学院 南宁 530004 2广西喀斯特地区节水农业新技术院士工作站 南宁 530004 3广西高校作物栽培学与耕作学重点实验室 南宁 530004 4南宁市灌溉试验站 南宁 530001
Author(s):
FANG Zetao1 2 3 LI Fusheng1 2 3** LIU Jingwen1 2 3 WANG Kai1 2 3 DONG Yanfang1 2 3 HUANG Zhonghua4 & LUO Weigang4
1 College of Agriculture, Guangxi University, Nanning 530004, China 2 Guangxi Academician Work Station of New Technology of Water-saving Agriculture in Karst Region, Nanning 530004, China 3 Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning 530004, China 4 Nanning Irrigation Experimental Station, Nanning 530001, China
关键词:
硝酸还原酶羟胺还原酶N2O排放“薄浅湿晒”灌溉干湿交替灌溉有机无机氮肥配施
Keywords:
nitrate reductase hydroxylamine reductase N2O emission “thin-shallow-wet-dry” irrigation alternate wetting and drying irrigation combined application of organic and inorganic nitrogen fertilizers
分类号:
S154.1
DOI:
10.3724/SP.J.1145.2016.12040
摘要:
通过大田试验,研究不同灌溉模式和施氮处理对晚稻和早稻不同时期稻田N2O排放和硝酸还原酶(NR)、亚硝酸还原酶(NiR)和羟胺还原酶(HyR)活性的影响,并分析稻田N2O排放通量与NR、NiR和HyR活性的关系. 两季试验均设3种灌溉模式[常规灌溉(CIR)、“薄浅湿晒”灌溉(TIR)以及干湿交替灌溉(DIR)]和2种施氮处理(N1:100%尿素;N2:50%尿素+50%猪粪). 结果表明:N2处理下,TIR模式早稻产量较CIR模式提高20.9%,DIR模式早稻产量和两季总产量较CIR模式分别提高37.4%和21.6%. 相同施氮处理下,CIR模式土壤NR和NiR活性大于DIR模式,DIR模式土壤HyR活性在分蘖期、孕穗期和乳熟期显著大于CIR模式. 与N1相比,CIR模式下N2处理土壤NR和NiR活性在孕穗期分别提高12.5%-15.1%和12.2%-25.4%;TIR模式下N2处理土壤NiR活性在分蘖期和孕穗期分别提高11.9%-16.9%和17.6%-27.1%,以及土壤HyR活性在乳熟期和成熟期分别提高34.3%-40.8%和10.1%-41.8%;DIR模式下N2处理土壤NiR活性在乳熟期和成熟期分别提高18.0%-26.1%和4.9%-12.9%,以及土壤HyR活性在孕穗期提高27.2%-40.3%. DIR和N2互作显著降低分蘖期和乳熟期土壤NR活性,提高土壤HyR活性. CIR和TIR模式稻田N2O排放主要集中在乳熟期和成熟期,不同处理两季水稻N2O总排放量的顺序为DIR-N2 > DIR-N1 > TIR-N2 > CIR-N2 > TIR-N1 > CIR-N1;两季稻田N2O排放通量与HyR活性显著正相关(相关系数为0.423-0.431). 因此DIR和N2互作提高了稻田水稻产量、N2O排放量以及分蘖期、乳熟期土壤HyR活性,但降低了土壤NR活性,且土壤HyR活性显著影响N2O排放通量,其结果可为稻田N2O减排提供依据. (图5 表2 参31)
Abstract:
The effects of different irrigation modes and nitrogen (N) treatments on N2O emission and nitrate reductase (NR), nitrite reductase (NiR), and hydroxylamine reductase (HyR) activities in paddy soil at different growth stages of late rice and early rice were investigated using two field experiments. The relationships between N2O emission flux and NR, NiR, and HyR activities in paddy soil were analyzed. In the present study, the experiments were conducted over two growing seasons and included three irrigation modes—conventional irrigation (CIR), ‘thin-shallow-wet-dry’ irrigation (TIR), and alternate wetting and drying irrigation (DIR)—and two N treatments—N1 (100% urea) and N2 (50% urea and 50% pig manure). In comparison with the CIR mode, the TIR mode increased early rice yield in the N2 treatment by 20.9%, and the DIR mode increased early rice yield and total yield of two growing seasons in the N2 treatment by 37.4% and 21.6%, respectively. In the same N treatment, soil NR and NiR activities were higher in the CIR mode than in the DIR mode. Additionally, at the tillering, booting, and milky stages, soil HyR activity was significantly higher in the DIR mode than in the CIR mode. In comparison with the N1 treatment, the N2 treatment increased soil NR and NiR activities at the booting stage by 12.5%–15.1% and 12.2%–25.4%, respectively, under the CIR mode; enhanced soil NiR activity at the tillering and booting stages by 11.9%–16.9% and 17.6%–27.1%, respectively, and increased soil HyR activity at the milky and ripening stages by 34.3%–40.8% and 10.1%–41.8%, respectively, under the TIR mode; and enhanced soil NiR activity at the milky and ripening stages by 18.0%–26.1% and 4.9%–12.9%, respectively, and increased soil HyR activity at the booting stage by 27.2%–40.3% under the DIR mode. The interaction of DIR and N2 significantly decreased soil NR activity and enhanced soil HyR activity at the tillering and milky stages. N2O emissions from paddy field soil under the TIR and CIR modes were mainly concentrated at the milky and ripening stages, and the total N2O emissions of two growing seasons under different treatments were ranked as DIR-N2 > DIR-N1 > TIR-N2 > CIR-N2 > TIR-N1 > CIR-N1. The N2O emission flux from paddy field soil was significantly positively correlated with soil HyR activity (correlation coefficient of 0.423–0.431). The interaction of DIR and N2 increased rice yield, N2O emission from paddy field soil, and soil HyR activity at the tillering and milky stages, but decreased soil NR activity. Moreover, soil HyR activity significantly affected the N2O emission flux. Our results provide a scientific basis for the reduction of N2O emissions from paddy field soil.

参考文献/References:

1 黄耀. 中国的温室气体排放、减排措施与对策[J]. 第四纪研究, 2006, 26 (5): 722-732 [Huang Y. Emissions of greenhouse gases in China and its reduction strategy [J]. Quaternary Sci, 2006, 26 (5): 722-732]
2 王刚, 杨宪龙, 李渊, 丁新宇, 沈禹颖. 陇东旱塬苜蓿草地N2O排放特征及其对施氮的响应[J]. 应用与环境生物学报, 2018, 24 (3): 10.3724/SP.J.1145.2017.06039 [Wang G, Yang XL, Li Y, Ding XY Shen YY. Characteristics of N2O mission from Medicago sativa stands and its response to nitrogen fertilizer in Longdong dryland Plateau [J]. Chin J Appl Environ Biol, 2018, 24 (3): 10.3724/SP.J.1145.2017.06039]
3 Hauck RD. Nitrogen fertilizer effects on nitrogen cycle processes [J]. Ecol Bull, 1981, 33: 551-562
4 王苏平, 辉建春, 林立金, 朱雪梅, 朱波. 施肥制度对川中丘陵区玉米不同生育期土壤反硝化酶活性的影响[J]. 水土保持研究, 2012, 19 (3): 274-277, 283 [Wang SP, Hui JC, Lin LJ, Zhu XM, Zhu B, Effects of fertilizer system on soil denitrification enzyme activity at different growth stages of maize in hilly regions of Middle Sichuan [J]. Res Soil Water Conserv, 2012, 19 (3): 274-277, 283]
5 史奕, 黄国宏. 土壤中反硝化酶活性变化与N2O排放的关系[J]. 应用生态学报, 1999, 10 (3): 74-76 [Shi Y, Huang GH. Relationship between soil denitrifying enzyme activities and N2O emission [J]. Chin J Appl Ecol, 1999, 10 (3): 74-76]
6 李健陵, 李玉娥, 周守华, 苏荣瑞, 万运帆, 王斌, 蔡威威, 郭晨, 秦晓波, 高清竹, 刘硕. 节水灌溉、树脂包膜尿素和脲酶/硝化抑制剂对双季稻温室气体减排的协同作用[J]. 中国农业科学, 2016, 49 (20): 3958-3967 [Li JL, Li YE, Zhou SH, Su RR, Wan YF, Wang B, Cai WW, Guo C, Qin XB, Gao QZ, Liu S. Synergistic effects of water-saving irrigation, polymer-coated nitrogen fertilizer and urease/nitrification inhibitor on mitigation of greenhouse gas emissions from the double rice cropping system[J]. Sci Agric Sin, 2016, 49 (20): 3958-3967]
7 陈涛涛, 孙德环, 张旭东, 吴奇, 郑俊林, 迟道才. 干湿交替灌溉下水氮耦合对沸石处理稻田产量和水氮利用的影响[J]. 农业工程学报, 2016, 32 (22): 154-162 [Chen TT, Sun DH, Zhang XD, Wu Q, Zheng JL, Chi DC. Impact of water-nitrogen coupling on grain yield, water and nitrogen usage in zeolite-amended paddy field under alternate wetting and drying irrigation [J]. Trans CSAE, 2016, 32 (22): 154-162]
8 Katayanagi N, Furukawa Y, Fumoto T, Hosen Y. Validation of the DNDC-rice model by using CH4 and N2O flux data from rice cultivated in pots under alternate wetting and drying irrigation management [J]. Soil Sci Plant Nutr, 2012, 58 (3): 360-372
9 Zou JW, Huang Y, Zong, LG, Wang YS, Sass RL. Integrated effect of incorporation with different organic manures on CH4 and N2O emissions from rice paddy [J]. Environ Sic, 2003, 24 (4): 7-12
10 林伟, 张薇, 李玉中, 徐春英, 李巧珍, 郑欠. 有机肥与无机肥配施对菜地土壤N2O排放及其来源的影响[J]. 农业工程学报, 2016, 32 (19): 148-153 [Lin W, Zhang W, Li YZ, Xu CY, Li QZ, Zhen Q. Effects of combined application of manure and inorganic fertilizer on N2O emissions and sources in vegetable soils [J]. Trans CSAE, 2016, 32 (19): 148-153]
11 王耀聪, 王利英, 高志岭, 马文奇. 施用有机肥、化肥对设施番茄土壤N2O排放的影响[J]. 河北农业大学学报, 2016, 39 (3): 1-6 [Wang YC, Wang LY, Gao ZL, Ma WQ. Effects of applying organic manure and chemical fertilizers on N2O emissions from tomato greenhouse soil [J]. J Agric Univ Hebei, 2016, 39 (3): 1-6]
12 茆智. 水稻节水灌溉及其对环境的影响[J]. 中国工程科学, 2002, 4 (7): 8-16 [Mao Z. Water saving irrigation for rice and its effect on environment [J]. Eng Sci, 2002, 4 (7): 8-16]
13 张自常. 水稻高产优质节水灌溉技术及其生理基础[D]. 扬州: 扬州大学, 2012 [Zhang ZC. Water-Saving irrigation techniques for high yield and good quality of rice and their physiological bases[D]. Yangzhou: Yangzhou University, 2012]
14 武志杰, 隽英华, 陈利军, 史云峰. 一种检测土壤硝酸还原酶活性的分析方法: 中国, 101271060A [P]. 2008-09-24 [Wu ZJ, Juan YH, Chen LJ, Shi YF. A method of detecting soil nitrate reductase activity: China, 101271060A [P]. 2008-09-24]
15 武志杰, 孙志梅, 张丽莉. 一种检测土壤亚硝酸还原酶活性的分析方法:中国, 1979134A [P]. 2007-06-13 [Wu ZJ, Sun ZM, Zhang LL. A method of detecting soil nitrite reductase activity: China, 1979134A [P]. 2007-06-13]
16 武志杰, 史云峰, 陈利军, 王殳屹. 一种检测土壤中羟胺还原酶活性的分析方法:中国, 101082567A [P]. 2007-12-05 [Wu ZJ, Shi YF, Chen LJ, Wang SY. A method of detecting soil hydroxylamine reductase activity: China, 101082567A [P]. 2007-12-05]
17 彭世彰, 杨士红, 徐俊增. 控制灌溉对稻田CH4和N2O综合排放及温室效应的影响[J]. 水科学进展, 2010, 21 (2): 235-240 [Peng SZ, Yang SH, Xu JZ. Influence of controlled irrigation on CH4 and N2O emissions from paddy fields and subsequent greenhouse effect [J]. Adv Water Sci, 2010, 21 (2): 235-240]
18 张惠, 杨正礼, 罗良国, 张晴雯, 易军, 杨世琦, 陈媛媛, 王明. 黄河上游灌区稻田N2O排放特征[J]. 生态学报, 2011, 31 (21): 6606-6615 [Zhang H, Yang ZL, Luo LG, Zhang QW, Yi J, Yang SQ, Chen YY, Wang M. The feature of N2O emission from a paddy field in irrigation area of the Yellow River [J]. Acta Ecol Sin, 2011, 31 (21): 6606-6615]
19 徐红, 张学龄. 水稻节水灌溉技术的应用与推广[J]. 内蒙古水利, 2003 (3): 38-40 [Xu H, Zhang X L. Application and extension of rice water-saving irrigation technology [J]. Neimenggu Water Conserv, 2003 (3): 38-40]
20 张自常, 李鸿伟, 陈婷婷, 王学明, 王志琴, 杨建昌. 畦沟灌溉和干湿交替灌溉对水稻产量与品质的影响[J]. 中国农业科学, 2011, 44 (24): 4988-4998 [Zhang ZC, Li HW, Chen TT, Wang XM, Wang ZQ, Yang JC. Effect of furrow irrigation and alternate wetting and drying irrigation on grain yield and quality of rice [J]. Sci Agric Sin, 2011, 44 (24): 4988-4998]
21 李先, 刘强, 荣湘民, 谢桂先, 张玉平, 彭建伟, 宋海星. 有机肥对水稻产量和品质及氮肥利用率的影响[J]. 湖南农业大学学报 (自然科学版), 2010, 36 (3): 258-262 [Li X, Liu Q, Rong XM, Xie GX, Zhang YP, Peng JW, Song HX. Effects of organic fertilizers on yield and quality of rice grains and nitrogen use efficiency [J]. J Hunan Agric Univ (Nat Sic), 2010, 36 (3): 258-262]
22 熊莉, 徐振锋, 吴福忠, 杨万勤, 殷睿, 李志萍, 苟小林, 唐仕姗. 雪被斑块对川西亚高山冷杉林土壤氮转化酶活性的影响[J]. 应用生态学报, 2014, 25 (5): 1293-1299 [Xiong L, Xu ZF, Wu FZ, Yang WQ, Yin R, Li ZP, Gou XL, Tang SS. Effects of snow pack on soil nitrogen transformation enzyme activities in a subalpine Abies faxioniana forest of western Sichuan, China [J]. Chin J Appl Ecol, 2014, 25 (5): 1293-1299]
23 陈利军, 武志杰, 姜勇, 周礼恺. 与氮转化有关的土壤酶活性对抑制剂施用的响应[J]. 应用生态学报, 2002, 13 (9): 1099-1103 [Chen LJ, Wu ZJ, Jiang Y, Zhou LK. Response of N transformation related soil enzyme activities to inhibitor applications [J]. Chin J Appl Ecol, 2002, 13 (9): 1099-1103]
24 陈志刚, 刘龙梅, 陈蕾, 周晓红. 水分调控对水稻根际土壤反硝化作用的影响[J]. 水土保持研究, 2015, 22 (5): 133-137, 145 [Chen ZG, Liu LM, Chen L, Zhou XH. Effects of three different irrigation cultivated modes on soil denitrification of rice rhizosphere [J]. Res Soil Water Conserv, 2015, 22 (5): 133-137, 145]
25 刘学华. 干湿交替下土壤C、N养分流失机理研究[D]. 上海: 东华大学, 2015 [Liu XH. Mechanism of soil C, N nutrient losses during wetting and drying processes [D]. Shanghai: Donghua University, 2015]
26 和文祥, 魏燕燕, 蔡少华. 土壤反硝化酶活性测定方法及影响因素研究[J]. 西北农林科技大学学报(自然科学版), 2006, 34 (1): 121-124 [He WX, Wei YY, Cai SH. Study on assaying method and affecting factors of soil denitrification enzyme activity [J]. J Northwest A&F Univ Nat Sic Ed, 2006, 34 (1): 121-124]
27 周贝贝, 王一明, 林先贵. 不同处理方式的粪肥对水稻生长和温室气体排放的影响[J]. 应用与环境生物学报, 2016, 22 (3): 430-436 [Zhou BB, Wang YM, Lin XG. Effects of differently treated manures on rice growth and greenhouse gas emission [J]. Chin J Appl Environ Biol, 2016, 22 (3): 430-436].
28 徐丹. 寒地黑土稻田水肥管理与温室气体排放关系研究[D]. 哈尔滨: 东北农业大学, 2016 [Xu D. Studies on relationship between water and fertilizer managements and greenhouse gas emissions from black soil rice field in cold area [D]. Harbin: Northeast Agricultural University, 2016]
29 王明. 干湿交替驱动下土壤微生物量及N2O变化规律[D]. 北京: 中国农业科学院, 2013 [Wang M. Microbial biomass and N2O emission as affected by the soil drying and rewetting events [D]. Beijing: Chinese Academy of Agricultural Sciences, 2013]
30 徐华, 邢光熹, 蔡祖聪, 鹤田治雄. 土壤水分状况和氮肥施用及品种对稻田N2O排放的影响[J]. 应用生态学报, 1999, 10 (2): 59-61 [Xu H, Xing GX, Cai ZC, H. Tsuruta. Effect of soil water regime and chemical N fertilizers application on N2O emission from paddy field [J]. Chin J Appl Ecol, 1999, 10 (2): 59-61]
31 陈利军, 武志杰, 姜勇, 周礼恺. 与氮转化有关的土壤酶活性对抑制剂施用的响应[J]. 应用生态学报, 2002, 13 (9): 1099-1103 [Chen LJ, Wu ZJ, Jiang Y, Zhou LK. Response of N transformation related soil enzyme activities to inhibitor applications [J]. Chin J Appl Ecol, 2002, 13 (9): 1099-1103]

相似文献/References:

[1]王金花,等.氮、磷营养盐对东海原甲藻生长和硝酸还原酶活性的影响*[J].应用与环境生物学报,2008,14(05):620.

更新日期/Last Update: 2017-12-25