|本期目录/Table of Contents|

[1]张伟妮,陈晓佳,沈林松,等.强氯精对尼罗罗非鱼精巢N-乙酰-β-D-氨基葡萄糖苷酶的失活动力学[英文][J].应用与环境生物学报,2017,23(2):306-311.[doi:10.3724/SP.J.1145.2016.04033]
 ZHANG Weini,CHEN Xiaojia,SHEN Linsong,et al.Inactivation kinetics of N-Acetyl-β-D-glucosaminidase from the spermary of Nile tilapia (Oreochromis niloticus) by Trichloroisocyanuric acid[J].Chinese Journal of Applied & Environmental Biology,2017,23(2):306-311.[doi:10.3724/SP.J.1145.2016.04033]
点击复制

强氯精对尼罗罗非鱼精巢N-乙酰-β-D-氨基葡萄糖苷酶的失活动力学[英文]()
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
23卷
期数:
2017年第2期
页码:
306-311
栏目:
研究论文
出版日期:
2017-04-25

文章信息/Info

Title:
Inactivation kinetics of N-Acetyl-β-D-glucosaminidase from the spermary of Nile tilapia (Oreochromis niloticus) by Trichloroisocyanuric acid
作者:
张伟妮陈晓佳沈林松黄一帆黄小红
福建农林大学兽医中药与动物保健福建省重点实验室 福州 350002
Author(s):
ZHANG Weini CHEN Xiaojia SHEN Linsong HUANG Yifan & HUANG Xiaohong**
Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
关键词:
N-乙酰-β-D-氨基葡萄糖苷酶抑制微观失活速度常数强氯精
Keywords:
NAGase inhibition inactivation microscopic rate constants trichloroisocyanuric?acid
分类号:
Q556.2 : X174
DOI:
10.3724/SP.J.1145.2016.04033
摘要:
强氯精是水产养殖过程中普遍使用的消毒剂,为了解强氯精能够杀菌却不会对养殖水产动物尤其是其繁殖功能产生危害的有效浓度,以分离自尼罗罗非鱼(Oreochromis niloticus)精巢的N-乙酰-β-D-氨基葡萄糖苷酶(EC 3.2.1.52, NAGase)为材料,利用底物反应的动力学方法探讨强氯精对该酶的失活动力学. 结果显示该酶在强氯精溶液中是一个可逆的反竞争型的失活过程,其对酶抑制的IC50为(0.25 ± 0.02) mg/mL;而且强氯精能降低该酶的热稳定性和pH稳定性;通过建立失活模型,计算得知正向和逆向微观失活速度常数k′+0和k′-0值分别为3.84 ×10-3/s和8.37 × 10-4/s. 本研究结果可为评价强氯精对罗非鱼繁殖功能的影响提供理论依据. (图7 表1 参24)
Abstract:
Trichloroisocyanuric acid (TCCA) is a widely used sanitizer in aquaculture; however, the appropriate concentration for use that is effective without causing damage to aquatic animals, particularly their reproductive function, is not known. In this study, N-Acetyl-β-D-glucosaminidase (EC 3.2.1.52, NAGase) from the spermary of Nile tilapia (Oreochromis niloticus) was used to study the inactivation kinetics of NAGase in TCCA solution. The kinetic method of substrate reaction was used. The results showed that the inactivation of tilapia NAGase by TCCA was reversible and uncompetitive, with an IC50 value at 0.25 ± 0.02 mg/mL. Moreover, TCCA reduced the thermal and pH stability of the NAGase. By establishing an inactivation model, k′+0 ad k′-0, the inactivation microscopic rate constants for the forward and reverse reactions, were determined to be 3.84 × 10-3/s and 8.37 × 10-4/s, respectively. These results highlight the inactivation kinetics of NAGase from the spermary of Nile tilapia by TCCA, and may be useful for the evaluation of TCCA toxicity on tilapia reproduction.

参考文献/References:

1 Nguyen HA, Nguyen TH, K?en V, Eijsink VGH, Haltrich D, Peterbauer CK. Heterologous expression and characterization of an N-Acetyl-β-D-hexosaminidase from Lactococcus lactis ssp. lactis IL1403 [J]. J Agric Food Chem, 2012, 60 (12): 3275-3281
2 Slamova K, Bojarova P, Petraskova L, Kren V. β-N-Acetylhexosaminidase: What’s in a name...? [J]. Biotechnol Adv, 2010, 28 (6): 682-693
3 Oikawa A, Itoh E, Ishihar A, Iwamura H. Purification and characterization of β-N-acetylhexosaminidase from maize seedlings [J]. J Plant Physiol, 2003, 160 (9): 991-999
4 Jagadeesh BH, Prabha TN, Srinivasan K. Activities of glycosidases during fruit development and ripening of tomato (Lycopersicum esculantum L.): implication in fruit ripening [J]. Plant Sci, 2004, 166 (6): 1451-1459
5 Hogenkamp DG, Arakane Y, Kramer KJ, Mutukrishnan S, Beeman RW. Characterization and expression of the β-N-acetylhexosaminidase genefamily of Tribolium castaneum [J]. Insect Biochem Mol Biol, 2008, 38 (4): 478-489
6 Zhang JP, Hu YH, Wang Q, Wang W, Wang Y, Yan JH, Chen QX. Inhibitory kinetics of β-N-Acetyl-D-glucosaminidases from green crab (Scylla serrata) by zinc ion [J]. J Agric Food Chem, 2010, 58 (15): 8763-8767
7 Lemieux MJ, Mark BL, Cherney MM, Withers SG, Mahuran DJ, James MN. Crystallographic structure of human β-hexosaminidase A: interpretation of Tay-Sachs mutations and loss of GM2 ganglioside hydrolysis [J]. J Mol Biol, 2006, 359 (4): 913-929
8 Fukuishi N, Murakami S, Ohno A, Yamanaka N, Matsui N, Fukutsuji K, Yamada S, Itoh K, Akagi M. Does β-Hexosaminidase function only as a degranulation indicator in mast cells? The primary role of β-hexosaminidase in mast cell granules [J]. J Immunol, 2014, 193 (4): 1886-1894
9 Koo IC, Ohol YM, Wu P, Morisaki J H, Cox JS, Brown EJ. Role for lysosomal enzyme β-hexosaminidase in the control of mycobacteria infection [J]. PNAS, 2008, 105 (2): 710-715
10 Zitta K, Wertheimer EV, Miranda PV. Sperm N-acetylglucosaminidase is involved in primary binding to the zona pellucida [J]. Mol Human Reprod, 2006, 12 (9): 557-563
11 Cattaneo F, Pasini ME, Intra J, Matsumoto M, Briani F, Hoshi M, Perotti ME. Identification and expression analysis of Drosophila melanogaster genes encoding β-hexosaminidases of the sperm plasma membrane [J]. Glycobiology, 2006, 16 (9): 786-800
12 Sarosiek B, Glogowski J, Cejko BI, Kujawa R, Szczepkowski M, Kuzminski H, Dobosz S, Kowalski RK. Inhibition of β-N-acetylglucosaminidase by acetamide affects sperm motility and fertilization success of Rainbow Trout (Oncorhynchus mykiss) and Siberian Sturgeon (Acipenser baerii) [J]. Theriogenology, 2014, 81 (5): 723-732
13 Shi Y, Jiang Z, Han P, Zheng GX, Song KK, Chen QX. Purification and some properties of β-N-acetyl-D-glucosaminidase from the cabbage butterfly (Pieris rapae) [J]. Biochimie, 2007, 89 (3): 347-354
14 Xie XL, Huang QS, Gong M, Yang Y, Chen QX. Inhibitory kinetics of β-N-acetyl-D-glucosaminidase from prawn (Litopenaeus vannamei) by zinc ion [J]. IUBMB Life, 2009, 61 (2): 163-170
15 张伟妮, 陈欣颖, 黄小红, 胡崇伟, 黄一帆. 4种重金属离子对克氏原螯虾(Procambarus clarkii)NAGase活力的影响[J]. 应用与环境生物学报, 2012, 18 (6): 943-947 [Zhang WN, Chen XY, Huang XH, Hu CW, Huang YF. Effects of four heavy metal ions on the NAGase of Procambarus clarkia [J]. Chin J Appl Environ Biol, 2012, 18 (6): 943-947]
16 Zhang WN, Bai DP, Huang YF, Hu CW, Chen QX, Huang XH. Enzymatic characterizations and activity regulations of N-Acetyl-β-D-glucosaminidase from the spermary of Nile Tilapia (Oreochromis niloticus) [J]. J Biosci Bioeng, 2014, 117 (2): 153-157
17 Zhang WN, Chen QX, Lin XY, Huang XH, Huang YF. Irreversible inhibitory kinetics of mercuric ion on N-Acetyl-β-D-glucosaminidase from Nile tilapia (Oreochromis niloticus) [J]. Aquat Toxiol, 2014, 154: 163-167
18 Zhang WN, Bai DP, Lin XY, Chen QX, Huang XH, Huang YF. Inactivation Kinetics of formaldehyde on N-Acetyl-β-D-glucosaminidase from Nile Tilapia (Oreochromis niloticus) [J]. Fish Physiol Biochem, 2014, 40 (2): 561-569
19 张伟妮, 谢璐娜, 黄小红. CuSO4和ZnSO4对尼罗罗非鱼N-乙酰-β-D-氨基葡萄糖苷酶的影响[J]. 水生生物学报, 2015, 39 (6): 1093-1099 [Zhang WN, Xie LN, Huang XH. Effects of CuSO4 and ZnSO4 on N-acetyl-β-D-glucosaminidase from Oreochromis niloticus [J]. Acta Hydrobiol Sin, 2015, 39 (6): 1093-1099]
20 宋向荣, 黄建勋, 马超亚, 陈晓燕, 伍津, 罗雪婷, 张伟, 王海兰. 三氯异氰尿酸原药对雄性大鼠生殖毒性研究[J]. 中国职业医学, 2012, 39 (4): 271-278 [Song XR, Huang JX, Ma CY, Chen XY, Wu J, Luo XT, Zhang W, Wang HL. Study on reproductive toxicity induced by trichloroisocyanuric acid in male SD rats [J]. Chin Occup Med, 2012, 39 (4): 271-278]
21 Tsou CL. Kinetics of substrate reaction during irreversible modification of enzyme activity [J]. Adv Enzymol Relat Areas Mol Biol, 1988, 61: 381-436
22 汪开毓, 陈德芳, 赵敏, 黄凌远, 黄锦炉. 罗非鱼主要疾病介绍与防治技术[J]. 科学养鱼, 2010 (6): 12-13 [Wang KY, Chen DF, Zhao M, Huang LY, Huang JL. Introduction and the prevention and cure technology of major diseases of Tilapia [J]. Sci Fish Farm, 2010 (6): 12-13]
23 张继平. 锯缘青蟹N-乙酰-β-D-氨基葡萄糖苷酶的性质及活力调控的研究[D]. 厦门: 厦门大学, 2006 [Zhang JP. Studies on the properties and the activity regulation of N-Acetyl-β-D-glucosaminidase from green crab (Scylla serrata) [D]. Xiamen: Xiamen University, 2006]
24 谢晓兰, 黄乾生, 魏晓倩, 杜娟, 王烨, 柯才焕, 陈清西. 养殖常用消毒药物对凡纳滨对虾NAGase活力的影响[J]. 水生态学杂志, 2009, 2 (4): 108-112 [Xie XL, Huang QS, Wei XQ, Du J, Wang Y, Ke CH, Chen QX. The effects of some aquacultural disinfectors on the activity of NAGase from prawn (Litopenaeus vannamei) [J]. J Hydroecol, 2009, 2 (4): 108-112]

相似文献/References:

[1]黄小红,陈宏惠,金艳冬,等.氨基酸对中华绒螯蟹N-乙酰-β-D-氨基葡萄糖苷酶活力的影响[J].应用与环境生物学报,2009,15(02):207.[doi:10.3724/SP.J.1145.2009.00207]
 HUANG Xiaohong,CHEN Honghui,JIN Yandong,et al.Effects of Amino Acids on N-acetyl-β-D-glucosaminidase Activity of Eriocheir sinensis[J].Chinese Journal of Applied & Environmental Biology,2009,15(2):207.[doi:10.3724/SP.J.1145.2009.00207]
[2]阳广凤,金仁村,余妤,等.厌氧氨氧化工艺的抑制现象[J].应用与环境生物学报,2012,18(03):502.[doi:10.3724/SP.J.1145.2012.00502]
 YANG Guangfeng,JIN Rencun,YU Yu,et al.Inhibition Phenomenon of Anammox Process[J].Chinese Journal of Applied & Environmental Biology,2012,18(2):502.[doi:10.3724/SP.J.1145.2012.00502]
[3]张伟妮,陈欣颖,黄小红,等.4种重金属离子对克氏原螯虾(Procambarus clarkii)NAGase活力的影响[J].应用与环境生物学报,2012,18(06):943.[doi:10.3724/SP.J.1145.2012.00943]
 ZHANG Weini,CHEN Xinying,HUANG Xiaohong,et al.Effects of Four Heavy Metal Ions on NAGase of Procambarus clarkii[J].Chinese Journal of Applied & Environmental Biology,2012,18(2):943.[doi:10.3724/SP.J.1145.2012.00943]
[4]沈林松,张 颖,张伟妮,等.果糖对莆田黑猪精液中NAGase的抑制动力学[J].应用与环境生物学报,2015,21(01):46.[doi:10.3724/SP.J.1145.2014.07013]
 SHEN Linsong,ZHANG Ying,ZHANG Weini,et al.Inhibitory kinetics of fructose on NAGase in semen of Putian black pigs[J].Chinese Journal of Applied & Environmental Biology,2015,21(2):46.[doi:10.3724/SP.J.1145.2014.07013]
[5]林心宇,张颖,张伟妮,等.镉离子对尼罗罗非鱼精巢N-乙酰-β-D-氨基葡萄糖苷酶的失活动力学[J].应用与环境生物学报,2018,24(03):609.[doi:10.19675/j.cnki.1006-687x.2017.08027]
 LIN Xinyu,ZHANG Ying,ZHANG Weini,et al.Inhibitory kinetics of β-N-acetyl-D-glucosaminidase from Nile tilapia (Oreochromis niloticus) by cadmium[J].Chinese Journal of Applied & Environmental Biology,2018,24(2):609.[doi:10.19675/j.cnki.1006-687x.2017.08027]

更新日期/Last Update: 2017-04-25