|本期目录/Table of Contents|

[1]黄玉吉,赖钟雄.香蕉几丁质酶基因ChiI2超表达载体和干涉表达载体的构建[J].应用与环境生物学报,2019,25(03):672-678.[doi:10.19675/j.cnki.1006-687x.201809019]
 HUANG Yuji LAI Zhongxiong**.Over-expression and RNAi expression vector construction for the ChiI2 gene of banana[J].Chinese Journal of Applied & Environmental Biology,2019,25(03):672-678.[doi:10.19675/j.cnki.1006-687x.201809019]
点击复制

香蕉几丁质酶基因ChiI2超表达载体和干涉表达载体的构建
分享到:

《应用与环境生物学报》[ISSN:1006-687X/CN:51-1482/Q]

卷:
25卷
期数:
2019年03期
页码:
672-678
栏目:
研究论文
出版日期:
2019-06-25

文章信息/Info

Title:
Over-expression and RNAi expression vector construction for the ChiI2 gene of banana
作者:
黄玉吉赖钟雄
1福建农林大学园艺学院 福州 350002 2福建农林大学园艺植物生物工程研究所 福州 350002
Author(s):
HUANG Yuji1 & LAI Zhongxiong2**
1 College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China 2 Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
关键词:
香蕉几丁质酶干涉表达载体超表达载体无缝克隆
Keywords:
banana chitinase RNAi expression vector over-expression vector seamless cloning
分类号:
S668.1: Q78
DOI:
10.19675/j.cnki.1006-687x.201809019
摘要:
分离克隆栽培香蕉中的几丁质酶基因ChiI2,构建超表达载体和干涉表达载体,可为进一步研究ChiI2基因响应抗逆胁迫的功能提供基础. 从栽培香蕉天宝蕉(Musa spp., AAA)中克隆几丁质酶基因ChiI2,利用生物信息软件对该基因进行分析,并用无缝克隆技术分别构建ChiI2的超表达载体和干涉表达载体. 从香蕉果皮中克隆到一个几丁质酶基因ChiI2,该基因全长942 bp,蛋白编码313个氨基酸,其编码的蛋白质理论分子量(Mr)为32.96,等电点(pI)为6.77. ChiI2蛋白的α-螺旋结构有6个,β-折叠结构有5个,转角结构有33个. 蛋白质疏水性预测分析值为-0.233,属于亲水性蛋白. 功能保守域分析表明,该蛋白是糖苷水解酶家族几丁质酶家族的一员. 该基因核苷酸序列推导的氨基酸与野生香蕉、玉米、水稻、小麦、莲等植物的同源性都在70%以上. 对ChiI2基因进行荧光定量PCR检测,发现4 ℃处理6 h的表达显著高于对照和38 ℃处理6 h,表明ChiI2基因可能与低温响应有关,诱导香蕉苗产生抗冷性. 利用无缝克隆技术成功构建了pGreenII-ChiI2超表达载体和pGreenII-ChiI2i干涉表达载体,并转化到农杆菌EHA105菌株中. 本研究成功地从栽培香蕉天宝蕉中分离克隆到了ChiI2基因,并对其基因特点和蛋白功能进行了预测分析,成功构建了超表达载体和干涉表达载体,可为进一步研究其功能奠定基础,也为采用基因工程方法改良选育香蕉抗寒品种提供了新尝试. (图8 表1 参24)
Abstract:
This study aimed to clone the full-length cDNA of the chitinase gene ChiI2 of the cultivated banana and construct over-expression and RNA interference (RNAi) expression vectors of it, which could form the basis of further studies on the functions of the ChiI2 gene in stress responses. According to the ChiI sequences obtained from the NCBI database, the ChiI2 gene was first isolated from the Tianbao banana (Musa spp., AAA). The gene characteristics, protein sequence, and phylogeny of the ChiI2 gene were analyzed using Blast, Expasy, and other types of bioinformatics software. Over-expression and RNA interference expression vectors were constructed using seamless cloning technology. A chitinase gene named ChiI2 was cloned from banana by homologous cloning. Using the relevant bioinformatics software for analyses, the open reading frame of the ChiI2 gene was found to be 942 bp in length and encode 313 amino acids. The theoretical molecular weight of the putative protein produced was 32.96 ku, and its isoelectric point (pI) was predicted to be 6.77. After Blast analysis, the nucleotide sequence of ChiI2 was found to share 99 and 97% identity with the chitinase isoform 2 (AJ277279) and chitinase isoform 1 (AJ277278) genes of dwarf banana, respectively. The ChiI2 protein was predicted to have six alpha-helical, five beta-folding, and 33 corner motifs. The protein’s predicted hydrophobicity value was -0.233, which means it belongs to the group of hydrophilic proteins. Functional conserved domain analysis showed that the protein was a member of the chitinase gene subfamily of the glycoside hydrolase family. The amino acid sequence deduced from the nucleotide sequence was more than 70% homologous to those of this gene in wild banana, maize, rice, wheat, and lotus. Real-time quantitative polymerase chain reaction (PCR) analysis indicated that a temperature of 4 ℃ promoted the expression of ChiI2 after plantlets were cooled to this temperature. These results indicated that ChiI2 may play a role in promoting the cold tolerance of banana. The over-expression vector pGreenII-ChiI2 and the RNAi expression vector pGreenII-ChiI2i were successfully constructed using seamless cloning techniques and transformed into Agrobacterium strain EHA105. The ChiI2 gene was successfully isolated and cloned from the cultivated Tianbao banana, and this gene’s characteristics and protein function were predicted and analyzed. Over-expression and RNAi expression vectors for this gene were successfully constructed, which laid the foundation for the further study of its function, and could be used to improve and breed cold-resistant banana varieties through genetic engineering.

参考文献/References:

1. 张慧坚, 曾小红, 刘晓光, 刘海清, 卢琨, 李晓娜, 董定超, 濮文辉, 麦雄俊, 谢龙莲, 秦斌华. 国内外热带作物生产与科技发展研究综述[J]. 农学学报, 2018, 8 (3): 69-77 [Zhang HJ, Zeng XH, Liu XG, Liu HQ, Lu K, Li XN, Dong DC, Pu WH, Mai XJ, Xie LL, Qin BH. Development and research on tropical agricultural science and technology at home and abroad: a review [J]. J Agric, 2018, 8 (3): 69-77]
2. 张静, 孙秀秀, 徐碧玉, 金志强, 刘菊华. 香蕉分子育种研究进展[J]. 分子植物育种, 2018, 16 (3): 914-923 [Zhang J, Sun XX, Xu BY, Jin ZQ, Liu JH. Research advances in molecular breeding of banana [J]. Mol Plant Breed, 2018, 16 (3): 914-923]
3. 吴志刚, 朱旭芬. 几丁质酶的分子生物学特性及其在转基因植物中的应用[J]. 生命科学, 2002, 14 (2): 117-121 [Wu ZG, Zhu XF. Molecular biology characterization and application in transgenic plant for chitinase [J]. Chin Bull Life Sci, 2002, 14 (2): 117-121]
4. Vellicce GR, Ricci JCD, Hernández L, Castagnaro AP. Enhanced resistance to Botrytis cinerea, mediated by the transgenic expression of the chitinase gene ch5b in strawberry [J]. Transgenic Res, 2006, 15 (1): 57-68
5. Peumans WJ, Proost P, Swennen RL, Damme V. The abundant class III chitinase homolog in young developing banana fruits behaves as a transient vegetative storage protein and most probably serves as an important supply of amino acids for the synthesis of ripening-associated proteins [J]. Plant Physiol, 2002, 130 (2): 1063-1072
6. Arimori T, Tamada T. Structure and function of a novel chitinase belonging to GH family 23 [J]. X-RAYS, 2014, 56 (3): 201-206
7. Clendennen SK, May GD. Differential gene expression in ripening banana fruit [J]. Plant Physiol, 1997, 115 (2): 463-469
8. Peumans WJ, Proost P, Swennen RL, Van Damme EJM. The abundant class III chitinase homolog in young developing banana fruits behaves as a transient vegetative storage protein and most probably serves as an important supply of amino acids for the synthesis of ripening-associated proteins [J]. Plant Physiol, 2002, 130 (2): 1063-1072
9. Clendennen SK, López-Gómez R, Gómez-Lim M, Arntzen CJ, May GD. The abundant 31-kilodalton banana pulp protein is homologous to class-III acidic chitinases [J]. Phytochemistry, 1998, 47 (4): 613-619
10. Rihs HP, Dumont B, Rozynek P, Lundberg M, Cremer R, Brüning T, Raulf-Heimsoth M. Molecular cloning, purification, and IgE-binding of a recombinant class I chitinase from Hevea brasiliensis leaves (rHev b 11.0102) [J]. Allergy, 2015, 58 (3): 246-251
11. 张妙霞, 赖钟雄. 野生香蕉几丁质酶基因的克隆与序列分析[J]. 热带作物学报, 2010, 31 (8): 1244-1252 [Zhang MX, Lai ZX. Cloning and sequence analyzing of a chitinase gene from the wild banana [J]. Chin J Trop Crops, 2010, 31 (8): 1244-1252]
12. Kovács G, Sági L, Jacon G, Arinaitwe G, Busogoro JP, Thiry E, Strosse H, Swennen R, Remy S. Expression of a rice chitinase gene in transgenic banana (‘Gros Michel’, AAA genome group) confers resistance to black leaf streak disease [J]. Transgenic Res, 2013, 22 (1): 117-130
13. Ma BC, Tang WL, Ma LY, Li LL, Zhang LB, Zhu SJ. The role of chitinase gene expression in the defense of harvested banana against anthracnose disease [J]. J Am Soc Hortic Sci, 2009, 134 (3): 379-386
14. 张妙霞, 赖钟雄, 蔡英卿. 野生香蕉几丁质酶抗冻蛋白基因(ChiI2)的克隆及分析[J]. 龙岩学院学报, 2016, 34 (5): 120-124 [Zhang MX, Lai ZX, Cai YQ. Cloning and sequence analyzing of a chitinase anti-freeze protein gene (ChiI2) from the wild banana [J]. J Longyan Univ, 2016, 34 (5): 120-124]
15. Hellens RP, Edwards EA, Leyland NR, Bean S, Mullineaux PM. pGreen: a versatile and flexible binary Ti vector for agrobacterium-mediated plant transformation [J]. Plant Mol Biol, 2000, 42 (6): 819-832
16. 周海涛, 付永平, 王丕武. 大豆Kunitz型胰蛋白酶抑制剂基因RNAi载体的构建[J]. 大豆科学, 2010, 29 (5): 742-746 [Zhou HT, Fu YP, Wang PW. Construction of RNAi expression vector of Kunitz trypsin inhibitor gene from soybean [J]. Soybean Sci, 2010, 29 (5): 742-746]
17. Suzuki HI, Spengler RM, Grigelioniene G, Kobayashi T, Sharp PA. Deconvolution of seed and RNA-binding protein crosstalk in RNAi-based functional genomics [J]. Nat Genet, 2018, 50: 657-661
18. Liu N, Xie K, Jia Q, Zhao JP, Chen TY, Li HG, Wei X, Diao XM, Hong YG, Liu YL. Foxtail mosaic virus-induced gene silencing in monocot plants [J]. Plant Physiol, 2016, 171 (3): 1801-1807
19. 冯媛媛, 李颖楠, 侯佩, 张景荣, 汪松虎, 刘永胜. 番茄ARF4基因果实特异RNAi载体的构建及遗传转化[J]. 应用与环境生物学报, 2012, 18 (2): 206-211 [Feng YY, Li YN, Hou P, Zhang JR, Wang SH, Liu YS. Construction and genetic transformation of tomato ARF4 RNA interference expression vector with fruit specific promoter [J]. Chin J Appl Environ Biol, 2012, 18 (2): 206-211]
20. Smith NA, Singh SP, Wang MB, Stoutjesdijk PA, Green AG, Waterhouse PM. Total silencing by intron-spliced hairpin RNAs [J]. Nature, 2000, 407 (6802): 319-320
21. Bally J, Mcintyre GJ, Doran RL, Lee K, Perez A, Jung H, Naim F, Larrinua IM, Narva KE, Waterhouse PM. In-plant protection against Helicoverpa armigera by production of long hpRNA in chloroplasts [J]. Front Plant Sci, 2016, 7 (e47534): 1453
22. Liu H, Zhao HX, Wu LH, Liu AN, Zhao FJ, Xu WZ. Heavy metal ATPase 3 (HMA3) confers cadmium hyper tolerance on the cadmium/zinc hyper accumulator Sedum plumbizincicola [J]. New Phytol, 2017, 215 (2): 687-698
23. 李静辉, 孟宇, 李玉恒, 李昌盛, 杨焕民, 李士泽. 冷诱导RNA结合蛋白(CIRP)过表达载体的构建及鉴定[J]. 应用与环境生物学报, 2015, 21 (2): 381-384 [Li JH, Meng Y, Li YH, Li CS, Yang HM, Li SZ. Construction and identification of over-expressing vector of cold inducible RNA-binding protein (CIRP) [J]. Chin J Appl Environ Biol, 2015, 21 (2): 381-384]
24. 邝翡婷, 袁定阳, 李莉, 李新奇. 一种载体构建的新方法: 重组融合PCR法[J]. 基因组学与应用生物学, 2012, 31 (6): 634-639 [Kuang FT, Yuan DY, Li L, Li XQ. A novel method for vector making: recombination-fusion PCR [J]. Genomics Appl Biol, 2012, 31 (6): 634-639]
25.

相似文献/References:

[1]彭国良,薛皎亮,刘卫敏,等.蜡蚧轮枝菌入侵蚧虫表皮过程中蛋白酶和几丁质酶的作用[J].应用与环境生物学报,2009,15(02):220.[doi:10.3724/SP.J.1145.2009.00220]
 PENG Guoliang,XUE Jiaoliang**,LIU Weimin & XIE Yingping.Role of Protease and Chitinase of Verticillium lecanii in Infecting Scale Insect Cuticle[J].Chinese Journal of Applied & Environmental Biology,2009,15(03):220.[doi:10.3724/SP.J.1145.2009.00220]
[2]胡燕梅,李国庆,杨龙.影响重寄生真菌盾壳霉几丁质酶的活性因子[J].应用与环境生物学报,2009,15(02):226.[doi:10.3724/SP.J.1145.2009.00226]
 HU Yanmei,LI Guoqing** & YANG Long.Characterization of Factors Affecting Activity of Chitinase Produced by Mycoparasite Coniothyrium minitans[J].Chinese Journal of Applied & Environmental Biology,2009,15(03):226.[doi:10.3724/SP.J.1145.2009.00226]
[3]薛皎亮,彭国良,谢映平,等.沙里院褐球蚧蜜露对病原真菌蜡蚧轮枝菌侵染力的影响[J].应用与环境生物学报,2010,16(04):504.[doi:10.3724/SP.J.1145.2010.00504]
 XUE Jiaoliang,PENG Guoliang,XIE Yingping,et al.Effect of Honeydew Excreted by Rhodococcus sariuoni on Infection Ability of Verticillium lecanii[J].Chinese Journal of Applied & Environmental Biology,2010,16(03):504.[doi:10.3724/SP.J.1145.2010.00504]
[4]袁先福,孙玉菡,朱成之,等.轮作联用生物有机肥促进香蕉生长[J].应用与环境生物学报,2018,24(01):60.[doi:10.19675/j.cnki.1006-687x.2017.03022]
 YUAN Xianfu,SUN Yuhan,ZHU Chengzhi,et al.Rotation combined with bio-organic fertilizer application to promote banana growth[J].Chinese Journal of Applied & Environmental Biology,2018,24(03):60.[doi:10.19675/j.cnki.1006-687x.2017.03022]
[5]任立世,程功,焦思明,等.热紫链霉菌几丁质酶表达及低脱乙酰度壳寡糖制备[J].应用与环境生物学报,2019,25(02):445.[doi:10.19675/j.cnki.1006-687x.2018.06038]
 REN Lishi,CHENG Gong,JIAO Siming,et al.Expression of chitinase from Streptomyces thermoviolaceus and preparation of chitooligosaccharides with a low degree of deacetylation[J].Chinese Journal of Applied & Environmental Biology,2019,25(03):445.[doi:10.19675/j.cnki.1006-687x.2018.06038]

更新日期/Last Update: 2019-06-25